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The electron- acoustic phonon interaction in monolayer graphene is studied in this paper. The interaction Hamiltonian of the 
electron and acoustic phonon in monolayer graphene is derived. The self-trapping transition of the acoustic polaron in 
monolayer graphene is investigated by using the variation of the ground-state energy of the acoustic polaron based on the 
electron-acoustic phonon coupling constant. It is shown that the electron near the Dirac point can not form normal polaron 
and the self-trapping transition of the acoustic polaron can not realized in this point of the monolayer graphene. The results 
show that outside the Dirac point, the self-trapping of acoustic polaron is consistent with the theory in ideal two-dimensional 
systems. 
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1. Introduction 
 

As the simplest model of the interaction between 

particles and fields, polarons play many important roles in 

many aspects, such as solid quantum systems, polar 

semiconductors, and even high temperature 

superconductors (HTS). As the basic carriers in crystals, 

there is great significance for polarons in explaining the 

optical transitions and transport phenomena in ionic 

crystals and polar semiconductors. The idea of polaronic 

dressing has been by now extended far beyond electron-

phonon systems and has become an important paradigm in 

physics [1-6]. It is known that the migration effects, such 

as effective mass, migration rate and ground state energy, 

varied with the electron-phonon interaction when electrons 

move in crystals with phonon clouds. For acoustic polaron, 

there is a self-trapping state based on abrupt change of 

energy and effective mass in transportation. 

Superconductivity is a special transport phenomenon, the 

microscopic mechanism at low temperature is also the 

electron-phonon interaction. Cooper pair in BCS theory of 

cryogenic superconductivity is also the polaron effect 

caused by interaction between electrons and phonons. 

There are many models can explain the microscopic 

mechanism of high temperature superconducting material, 

and the polaron-bipolaron model is just the natural 

extension of BCS theory [7-8]. Therefore, studying the 

properties of polarons is beneficial to the development and 

perfection of HTS model. 

Many new physics phenomena and application 

prospects has been found due to the discovering of 

graphene. As a new two-dimensional material, graphene 

has shown its characteristics in various aspects and 

brought new vitality to condensed matter physics [9-12]. 

Recent research has shown that the two layer graphene 

twisted together at 1.1 degree will present high 

temperature superconducting effect [13-14]. Although 

there are many studies on graphene, the problem of 

polaron self-trapping is still imperfect and needs to be 

explored.  

In this work, the Hamiltonian of the special structure 

of the graphene material is introduced firstly. The ground 

state energy of acoustic polaron near the Dirac cones and 

far away from it are derived by using Huybrechts 

variational method. By introducing the electron-acoustic 

phonon coupling constant, the self-trapping transition of 

the polaron will be discussed.  

 

 

2. Graphene and Electron-Phonon Interaction 
 

Graphene is a two-dimensional material consisting of 

a layer of carbon atoms arranged in honeycomb-like 

crystal lattice. The band structure of the graphene is 

obtained according to the tight-binding approximation. It 

is found that the valence band of graphene is connected 

with the conduction band at six vertices of Brillouin zone. 

This architecture pattern forms the band-gap-free 

semiconductor. The energy spectrum near the vertices is 

linear dispersion relation, these vertices are called Dirac 

points. According to the effective mass theory in the 

crystal, the effective mass near the points is zero. 

Therefore, the motion of electrons in graphene will be 

replaced by the massless Dirac equation, that is, the Weyl 

equation 
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where c is the kinematic velocity of massless particle, its 

Fermi velocity in graphene. 


 and p


 are the Pauli matrix 

and carrier momentum in two dimensional system 
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respectively. The positive and negative signs correspond to 

different helicity. In this paper, only the positive helicity is 

considered, then the kinematic energy of the electron can 

be written as the following formula 
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The interaction of electron and acoustic-phonon is 
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where 
cA

qD
Vq

2

2
 is the interaction coefficient [15], D is 

the deformation potential constant,  is the density of 

mass, A is the superficial area, q is the wave vector of 

phonon, qa and
†
qa are annihilation and creation operators 

of phonon. So that the Hamiltonian of polaron near the 

Dirac point can be described as 
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3. The Ground State Energy of Polaron 

 

In order to calculate the ground state energy of the 

polaron in the graphene system, Huybrechts variational 

method [16] had been used to make two variations to 

Formula (4). The first unitary transformation is 
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Introducing the creation and annihilation operators 

jb and
†
jb by 
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and 
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where a and  are variational parameters, the index j refers 

to the x and y directions. To calculate the energy 

eigenvalue, the second unitary transformation is necessary. 

Introducing displacement amplitude qf to approximate the 

Hamiltonian to diagonalization and obtain the non-

perturbative results 
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For the ground state of zero phonon 0 , 
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     In Fock representation, the ground state wave function 

of polaron in monolayer graphene is  
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is the electronic state function near the Dirac point in 

momentum space.  is 
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then the ground state energy of the polaron is 
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According to symmetry we can obtain the 

displacement amplitude 
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Substituting (11) into (10), we can get 
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Substituting the qV  into (12), the Hamiltonian is then last 

written as 
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For the electron which far from the Dirac point, the 

Hamiltonian of electron-acoustical phonon interaction due 

to the deformation potential can be written as [15] 
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           (14)  

with the DA interaction vertex defined as  

 202
2
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by introducing the nominal scattering time 
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the new Hamiltonian can be written as 
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Introducing the dimensionless bulk e-LA-p coupling 

constant 

c

mD
3
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                              (17) 

 

Using the Huybrechts variational approach and 

adopting Hou’s treatment [17], we can obtain the ground 

state energy 
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this formula is coincide with the expression of ground 

state energy of polaron in pure two dimensional system of 

Ref. [17]. 

 

 

 

4. Numerical results and discussions 
 
The ground state energy of polaron in graphene  

system is calculated. The criterion of self-trapping 

transition of acoustic polaron in graphene is also 

established by using the product of cut-off wave vector 

and coupling constant.  The correctness of the criterrion is 

confirmed by the result of electron-acoustic phonon 

interaction at the location that deviation from Dirac point. 

The formula (13) and (18) are the expressions of 

ground state energies near the Dirac point and far from the 

point, respectively. Expressing the energies in units of 
2mc , the lengths in units of mc/ , and the phonon wave 

vector in units of /mc . Thus all variables will be 

dimensionless. Equation (13) shows that the ground state 

energy has only integral term about wave vector, and (18) 

shows that the energy consists of two parts, integral term 

about wave vector and the constant term of variational 

parameters. Based on previous studies on polaron energy 

[18], we can see that the constant term containing 

variational parameters originates from the linear 

combination operators that introduced into the momentum 

in the electronic kinetic energy term. That is to say, it 

represents the characteristics of the electron itself. The 

integral term of wave vector is the result of the interaction 

between electron and phonons. Self-trapping is the binding 

state of electron in phonon cloud, which is the result of the 

coexistence of electron and phonons. The calculation 

shows that when the electron is near the Dirac point, there 

is only interaction term but no electron kinetic energy term 

in the ground state energy formula. Therefore, in this state, 

the electron can not form a normal polaron, and thus self-

trapping transition can not occur. 

For the non-relativistic effect, the relationship 

between the ground state energy of the acoustic polaron 

and the coupling constant is numerically calculated as 

shown in Fig. 1. 
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Fig. 1. Ground-state energies of the acoustic polaron in 2D graphene as a function of the e-p coupling constant  α   for  

 (a)  q0 = 50,   (b)  q0 = 100    and   (c)  q0 = 200 respectively 
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From Fig. 1 we can see that the electronic behavior is 

the normal electron in the crystal when it is far from the 

Dirac point, and the ground state energy decreases with the 

increases of the coupling constant. When the coupling 

constant increases to a certain value, the energy curve 

turns to an inflection point, and the polaron energy 

suddenly decreases, which is the transition from near-free 

state to self-trapping state. Defining the coupling constant 

as a critical coupling constant
c , we can get the condition 

of the self-trapping transition is 6.00 qc , which is 

consistent with Hou’s work [17] that obtained in the ideal 

model of general two-dimensional system.  

The explanation for the case of abnormal polaron and 

non-self-trapping near the Dirac point is as follows: Due to 

the special band structure of graphene, electrons exist in 

the form of massless near the zero band gap junction, 

which means that electrons have relativistic effects. But 

polaron is a quasi-particle of the interaction system 

between slow electron and lattice vibrating phonons, 

which is the characteristic of slow moving electrons in 

crystals. When the electrons have relativistic effect in a 

particular structure, the vibration frequency of phonons 

unable to respond to the nearest electrons due to the very 

fast migration rate of electrons. So that it is impossible to 

form the normal polaron, let alone form the self-trapping 

state.   
 

 
5.  Conclusion 
 

The ground state energies of acoustic polarons near 

the Dirac point and non-Dirac point of graphene are 

calculated by Huybrechts variational method, respectively. 

The results show that the normal polarons can not be 

formed due to the relativistic effect for the electrons near 

the Dirac point. The relationship between the ground state 

energy of acoustic polaron and the electron-phonon 

coupling constant is consistent with the conclusions 

obtained in the ideal two dimensional theory when the 

electrons deviated from the Dirac point. Furthermore, the 

self-trapping criterion of the acoustic polaron in two 

dimensional material is verified by graphene material. 
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